Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Sci Data ; 10(1): 203, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045861

RESUMO

RAF kinases play major roles in cancer. BRAFV600E mutants drive ~6% of human cancers. Potent kinase inhibitors exist but show variable effects in different cancer types, sometimes even inducing paradoxical RAF kinase activation. Both paradoxical activation and drug resistance are frequently due to enhanced dimerization between RAF1 and BRAF, which maintains or restores the activity of the downstream MEK-ERK pathway. Here, using quantitative proteomics we mapped the interactomes of RAF1 monomers, RAF1-BRAF and RAF1-BRAFV600E dimers identifying and quantifying >1,000 proteins. In addition, we examined the effects of vemurafenib and sorafenib, two different types of clinically used RAF inhibitors. Using regression analysis to compare different conditions we found a large overlapping core interactome but also distinct condition specific differences. Given that RAF proteins have kinase independent functions such dynamic interactome changes could contribute to their functional diversification. Analysing this dataset may provide a deeper understanding of RAF signalling and mechanisms of resistance to RAF inhibitors.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas c-raf , Humanos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais , Vemurafenib , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/genética , Proteoma
2.
J Chem Inf Model ; 63(8): 2483-2494, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37022803

RESUMO

The ERK pathway is one of the most important signaling cascades involved in tumorigenesis. So far, eight noncovalent inhibitors of RAF and MEK kinases in the ERK pathway have been approved by the FDA for the treatment of cancers; however, their efficacies are limited due to various resistance mechanisms. There is an urgent need to develop novel targeted covalent inhibitors. Here we report a systematic study of the covalent ligandabilities of the ERK pathway kinases (ARAF, BRAF, CRAF, KSR1, KSR2, MEK1, MEK2, ERK1, and ERK2) using constant pH molecular dynamics titration and pocket analysis. Our data revealed that the hinge GK (gate keeper)+3 cysteine in RAF family kinases (ARAF, BRAF, CRAF, KSR1, and KSR2) and the back loop cysteine in MEK1 and MEK2 are reactive and ligandable. Structure analysis suggests that the type II inhibitors belvarafenib and GW5074 may be used as scaffolds for designing pan-RAF or CRAF-selective covalent inhibitors directed at the GK+3 cysteine, while the type III inhibitor cobimetinib may be modified to label the back loop cysteine in MEK1/2. The reactivities and ligandabilities of the remote cysteine in MEK1/2 and the DFG-1 cysteine in MEK1/2 and ERK1/2 are also discussed. Our work provides a starting point for medicinal chemists to design novel covalent inhibitors of the ERK pathway kinases. The computational protocol is general and can be applied to the systematic evaluation of covalent ligandabilities of the human cysteinome.


Assuntos
MAP Quinase Quinase Quinases , Sistema de Sinalização das MAP Quinases , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , MAP Quinase Quinase Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Cisteína/metabolismo , Transdução de Sinais , Quinases raf/metabolismo
3.
J Biol Chem ; 299(5): 104634, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963492

RESUMO

Upon activation by RAS, RAF family kinases initiate signaling through the MAP kinase cascade to control cell growth, proliferation, and differentiation. Among RAF isoforms (ARAF, BRAF, and CRAF), oncogenic mutations are by far most frequent in BRAF. The BRAFV600E mutation drives more than half of all malignant melanoma and is also found in many other cancers. Selective inhibitors of BRAFV600E (vemurafenib, dabrafenib, encorafenib) are used clinically for these indications, but they are not effective inhibitors in the context of oncogenic RAS, which drives dimerization and activation of RAF, nor for malignancies driven by aberrantly dimerized truncation/fusion variants of BRAF. By contrast, a number of "type II" RAF inhibitors have been developed as potent inhibitors of RAF dimers. Here, we compare potency of type II inhibitors tovorafenib (TAK-580) and naporafenib (LHX254) in biochemical assays against the three RAF isoforms and describe crystal structures of both compounds in complex with BRAF. We find that tovorafenib and naporafenib are most potent against CRAF but markedly less potent against ARAF. Crystal structures of both compounds with BRAFV600E or WT BRAF reveal the details of their molecular interactions, including the expected type II-binding mode, with full occupancy of both subunits of the BRAF dimer. Our findings have important clinical ramifications. Type II RAF inhibitors are generally regarded as pan-RAF inhibitors, but our studies of these two agents, together with recent work with type II inhibitors belvarafenib and naporafenib, indicate that relative sparing of ARAF may be a property of multiple drugs of this class.


Assuntos
Modelos Moleculares , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Humanos , Linhagem Celular Tumoral , Cristalografia por Raios X , Sistema de Sinalização das MAP Quinases , Melanoma/tratamento farmacológico , Estrutura Molecular , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
4.
Arch Pharm (Weinheim) ; 356(4): e2200464, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36526595

RESUMO

As dual EGFR and BRAFV600E inhibitors, 2-(3-cyano-4,6-bis(aryl)-2-oxo-1,2-dihydropyridine-1-yl)-N-(4-cinnamoylphenyl) acetamide derivatives 8-20 were developed. Compounds 8, 12, and 13 showed strong antiproliferative activity when the target compounds were synthesized and tested in vitro against four cancer cell lines. These hybrids have a dual inhibition activity on EGFR and BRAFV600E , according to in vitro studies. The EGFR was inhibited by compounds 8, 12, and 13 with IC50 values between 89 and 110 nM, which were equivalent to those of erlotinib (IC50 = 80 nm). Compound 13 was found to be an effective inhibitor of the proliferation of cancer cells (GI50 = 0.72 µM) and demonstrated hopeful inhibitory activity of BRAFV600E (IC50 = 58 nm), which is superior to erlotinib (IC50 = 65 nm). Compound 13 caused apoptosis and showed cell cycle arrest in the G0/G1phase in a study on the MCF-7 cell line. The new compounds can fit tightly into the active sites of EGFR and BRAFV600E kinases, according to molecular docking analyses.


Assuntos
Antineoplásicos , Chalconas , Humanos , Relação Estrutura-Atividade , Cloridrato de Erlotinib/farmacologia , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/química , Chalconas/farmacologia , Proliferação de Células , Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
5.
Sci Rep ; 12(1): 12528, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869122

RESUMO

The BRAF kinase is attracting a lot of attention in oncology as alterations of its amino acid sequence can constitutively activate the MAP kinase signaling pathway, potentially contributing to the malignant transformation of the cell but at the same time rendering it sensitive to targeted therapy. Several pathologic BRAF variants were grouped in three different classes (I, II and III) based on their effects on the protein activity and pathway. Discerning the class of a BRAF mutation permits to adapt the treatment proposed to the patient. However, this information is lacking new and experimentally uncharacterized BRAF mutations detected in a patient biopsy. To overcome this issue, we developed a new in silico tool based on machine learning approaches to predict the potential class of a BRAF missense variant. As class I only involves missense mutations of Val600, we focused on the mutations of classes II and III, which are more diverse and challenging to predict. Using a logistic regression model and features including structural information, we were able to predict the classes of known mutations with an accuracy of 90%. This new and fast predictive tool will help oncologists to tackle potential pathogenic BRAF mutations and to propose the most appropriate treatment for their patients.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas B-raf , Humanos , Aprendizado de Máquina , Mutação , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética
6.
Nat Commun ; 13(1): 486, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078985

RESUMO

RAF kinases are essential effectors of RAS, but how RAS binding initiates the conformational changes needed for autoinhibited RAF monomers to form active dimers has remained unclear. Here, we present cryo-electron microscopy structures of full-length BRAF complexes derived from mammalian cells: autoinhibited, monomeric BRAF:14-3-32:MEK and BRAF:14-3-32 complexes, and an inhibitor-bound, dimeric BRAF2:14-3-32 complex, at 3.7, 4.1, and 3.9 Å resolution, respectively. In both autoinhibited, monomeric structures, the RAS binding domain (RBD) of BRAF is resolved, revealing that the RBD forms an extensive contact interface with the 14-3-3 protomer bound to the BRAF C-terminal site and that key basic residues required for RBD-RAS binding are exposed. Moreover, through structure-guided mutational studies, our findings indicate that RAS-RAF binding is a dynamic process and that RBD residues at the center of the RBD:14-3-3 interface have a dual function, first contributing to RAF autoinhibition and then to the full spectrum of RAS-RBD interactions.


Assuntos
Microscopia Crioeletrônica/métodos , Mutação , Neoplasias/patologia , Multimerização Proteica , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Conformação Proteica , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/química
7.
J Recept Signal Transduct Res ; 42(5): 439-453, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34844526

RESUMO

B-Raf is one among the most frequently mutating proto-oncogene which is associated with the serine/threonine Raf kinase family involved in the RAS-RAF-MEK-ERK pathway, which is the most deregulated pathway in human cancers. Mutant B-Raf V600E got an excellent scope for investigation in cancer as a potential therapeutic target. Formerly B-RafV600E is considered the molecular target for numerous antitumor compounds like purinyl pyridine and pyrimidine derivatives. In the current research work using molecular docking approach of Schrodinger Glide 5.6 version, ligand docking, pharmacophore-based virtual screening, binding free energy calculations of a series of 2-amino purinyl pyridine and pyrimidine derivatives were modeled, their docking values were predicted, that were considered to be potent against B-Raf V600E. A five-point hypothesis accompanied by a hydrogen bond acceptor(A), two hydrogen bond donors(D), and two aromatic rings (R) was built with a justifiable R2 value of 0.91 and a Q2 value of 0.64. Then by using Asinex Elite Synergy database, virtual screening was performed, and identified several potential hits. Subsequently, the molecules which had interactions with the target B-Raf kinase were determined by subjecting the obtained hits for SP and XP docking processes. Finally, for the top leads obtained, binding free energies were accomplished. About 16 new purinyl pyridine molecules were also designed. Almost nine molecules manifested crucial ligand interactions and binding free energies. At the outset, this research paved the way for us in spotting new molecules with B-Raf inhibitory activity, which can further be explored to design molecules with enhanced pharmacokinetic profiles.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Humanos , Ligantes , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Piridinas , Pirimidinas , Serina , Treonina
8.
Br J Cancer ; 125(11): 1552-1560, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34621046

RESUMO

BACKGROUND: Simultaneous inhibition of multiple components of the BRAF-MEK-ERK cascade (vertical inhibition) has become a standard of care for treating BRAF-mutant melanoma. However, the molecular mechanism of how vertical inhibition synergistically suppresses intracellular ERK activity, and consequently cell proliferation, are yet to be fully elucidated. METHODS: We develop a mechanistic mathematical model that describes how the mutant BRAF inhibitor, dabrafenib, and the MEK inhibitor, trametinib, affect BRAFV600E-MEK-ERK signalling. The model is based on a system of chemical reactions that describes cascade signalling dynamics. Using mass action kinetics, the chemical reactions are re-expressed as ordinary differential equations that are parameterised by in vitro data and solved numerically to obtain the temporal evolution of cascade component concentrations. RESULTS: The model provides a quantitative method to compute how dabrafenib and trametinib can be used in combination to synergistically inhibit ERK activity in BRAFV600E-mutant melanoma cells. The model elucidates molecular mechanisms of vertical inhibition of the BRAFV600E-MEK-ERK cascade and delineates how elevated BRAF concentrations generate drug resistance to dabrafenib and trametinib. The computational simulations further suggest that elevated ATP levels could be a factor in drug resistance to dabrafenib. CONCLUSIONS: The model can be used to systematically motivate which dabrafenib-trametinib dose combinations, for treating BRAFV600E-mutated melanoma, warrant experimental investigation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Modelos Biológicos , Modelos Químicos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Imidazóis/química , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Melanoma/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Oximas/química , Oximas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Piridonas/química , Piridonas/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia
9.
Curr Treat Options Oncol ; 22(11): 105, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34613491

RESUMO

OPINION STATEMENT: Molecular heterogeneity has confounded attempts to target individual pathways in brain tumors. However, gliomas with BRAF mutations have been identified as being uniquely vulnerable to targeted therapies. Such mutations are predominantly seen in brain tumors of the adolescent and young adult population. Given that accurate and timely identification of such mutations is essential for offering appropriate treatment, treatment centers should offer both immunohistochemical and sequencing methods for detection of these mutations to guide treatment. Additional studies of these tumors at recurrence would also allow identification of breakthrough resistance mechanisms that may also be targetable for treatment. Due to the relative rarity of these tumors, multicenter collaborative studies will be essential in achieving long term control of these tumors.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Terapia de Alvo Molecular , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Alelos , Substituição de Aminoácidos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/mortalidade , Ensaios Clínicos como Assunto , Diagnóstico Diferencial , Gerenciamento Clínico , Suscetibilidade a Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Predisposição Genética para Doença , Genótipo , Humanos , Terapia de Alvo Molecular/efeitos adversos , Terapia de Alvo Molecular/métodos , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/química , Retratamento , Resultado do Tratamento
10.
Bioengineered ; 12(1): 2970-2983, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252351

RESUMO

The aim of this research was to screen the ZINC15 database to select lead compounds and drug candidates which can inhibit B-RAF (V600E). In order to identify drugs potentially inhibited B-RAF (V600E), numerous modules of Discovery Studio 4.5 were employed. Structure-based screening using LibDock was carried out followed by ADME (absorption, distribution, metabolism, excretion) and toxicity prediction. CDOCKER was performed to demonstrate the binding affinity and mechanism between ligands and B-RAF(V600E). To evaluate whether ligand-receptor complexes were stable, molecular dynamics were employed. Two novel natural compounds (ZINC000100168592 and ZINC000049784088) from ZINC15 database were found binding to B-RAF(V600E) with more favorable interaction energy in comparison with the reference drug Vemurafenib. Also, they were predicted with less ames mutagenicity, rodent carcinogenicity, non-developmental toxic potential and tolerance to cytochrome P450 2D6 (CYP2D6). The molecular dynamics simulation analysis indicated that the compound-B-RAF(V600E) complexes had more favorable potential energy compared with Vemurafenib and they can exist in natural environments stably. The result of this study shows that ZINC000100168592 and ZINC000049784088 are ideal leading potential compounds to inhibit B-RAF(V600E). The findings of this study and these selected drug candidates greatly contributed to the medication design and improvement of B-RAF(V600E) and other proteins.


Assuntos
Descoberta de Drogas , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Animais , Bases de Dados de Compostos Químicos , Humanos , Camundongos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/toxicidade , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Ratos , Vemurafenib/química , Vemurafenib/metabolismo , Vemurafenib/toxicidade
11.
Structure ; 29(7): 768-777.e2, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711246

RESUMO

Raf-activating mutations are frequent in cancer. In the basal state, B-Raf is autoinhibited by its upstream Ras-binding domain (RBD) and cysteine-rich domain (RBD-CRD) interacting with its kinase domain (KD) and the 14-3-3 dimer. Our comprehensive molecular dynamics simulations explore two autoinhibition scenarios in the presence and absence of the 14-3-3 dimer. When present, the 14-3-3 interaction with B-Raf stabilizes the RBD-CRD-KD interaction, interfering with the KD dimerization. Raf's pSer365 removal fails to induce large disruption. RBD-CRD release promotes KD fluctuations and reorientation for dimerization, consistent with experimental data. In the absence of 14-3-3, our sampled B-Raf conformations suggest that RBD-CRD can block the KD dimerization surface. Our results suggest a B-Raf activation mechanism, whereby one KD monomer is donated by 14-3-3-free B-Raf KD and the other by 14-3-3-bound KD. This mechanism can lead to homo- and heterodimers. These autoinhibition scenarios can transform autoinhibited B-Raf monomers into active B-Raf dimers.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sítios de Ligação , Homeostase , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Proteínas Proto-Oncogênicas B-raf/genética
12.
Molecules ; 26(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530327

RESUMO

While selective inhibition is one of the key assets for a small molecule drug, many diseases can only be tackled by simultaneous inhibition of several proteins. An example where achieving selectivity is especially challenging are ligands targeting human kinases. This difficulty arises from the high structural conservation of the kinase ATP binding sites, the area targeted by most inhibitors. We investigated the possibility to identify novel small molecule ligands with pre-defined binding profiles for a series of kinase targets and anti-targets by in silico docking. The candidate ligands originating from these calculations were assayed to determine their experimental binding profiles. Compared to previous studies, the acquired hit rates were low in this specific setup, which aimed at not only selecting multi-target kinase ligands, but also designing out binding to anti-targets. Specifically, only a single profiled substance could be verified as a sub-micromolar, dual-specific EGFR/ErbB2 ligand that indeed avoided its selected anti-target BRAF. We subsequently re-analyzed our target choice and in silico strategy based on these findings, with a particular emphasis on the hit rates that can be expected from a given target combination. To that end, we supplemented the structure-based docking calculations with bioinformatic considerations of binding pocket sequence and structure similarity as well as ligand-centric comparisons of kinases. Taken together, our results provide a multi-faceted picture of how pocket space can determine the success of docking in multi-target drug discovery efforts.


Assuntos
Simulação de Acoplamento Molecular/métodos , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Simulação por Computador , Descoberta de Drogas , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Relação Estrutura-Atividade
14.
Clin Cancer Res ; 27(7): 2061-2073, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33355204

RESUMO

PURPOSE: Targeting RAF for antitumor therapy in RAS-mutant tumors holds promise. Herein, we describe in detail novel properties of the type II RAF inhibitor, LXH254. EXPERIMENTAL DESIGN: LXH254 was profiled in biochemical, in vitro, and in vivo assays, including examining the activities of the drug in a large panel of cancer-derived cell lines and a comprehensive set of in vivo models. In addition, activity of LXH254 was assessed in cells where different sets of RAF paralogs were ablated, or that expressed kinase-impaired and dimer-deficient variants of ARAF. RESULTS: We describe an unexpected paralog selectivity of LXH254, which is able to potently inhibit BRAF and CRAF, but has less activity against ARAF. LXH254 was active in models harboring BRAF alterations, including atypical BRAF alterations coexpressed with mutant K/NRAS, and NRAS mutants, but had only modest activity in KRAS mutants. In RAS-mutant lines, loss of ARAF, but not BRAF or CRAF, sensitized cells to LXH254. ARAF-mediated resistance to LXH254 required both kinase function and dimerization. Higher concentrations of LXH254 were required to inhibit signaling in RAS-mutant cells expressing only ARAF relative to BRAF or CRAF. Moreover, specifically in cells expressing only ARAF, LXH254 caused paradoxical activation of MAPK signaling in a manner similar to dabrafenib. Finally, in vivo, LXH254 drove complete regressions of isogenic variants of RAS-mutant cells lacking ARAF expression, while parental lines were only modestly sensitive. CONCLUSIONS: LXH254 is a novel RAF inhibitor, which is able to inhibit dimerized BRAF and CRAF, as well as monomeric BRAF, while largely sparing ARAF.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Células HCT116 , Humanos , Camundongos , Mutação , Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas p21(ras)/genética
15.
Biochemistry ; 59(50): 4755-4765, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33272017

RESUMO

In the MAPK pathway, an oncogenic V600E mutation in B-Raf kinase causes the enzyme to be constitutively active, leading to aberrantly high phosphorylation levels of its downstream effectors, MEK and ERK kinases. The V600E mutation in B-Raf accounts for more than half of all melanomas and ∼3% of all cancers, and many drugs target the ATP binding site of the enzyme for its inhibition. Because B-Raf can develop resistance against these drugs and such drugs can induce paradoxical activation, drugs that target allosteric sites are needed. To identify other potential drug targets, we generated and kinetically characterized an active form of B-RafV600E expressed using a bacterial expression system. In doing so, we identified an α-helix on B-Raf, found at the B-Raf-MEK interface, that is critical for their interaction and the oncogenic activity of B-RafV600E. We assessed the binding between B-Raf mutants and MEK using pull downs and biolayer interferometry and assessed phosphorylation levels of MEK in vitro and in cells as well as its downstream target ERK to show that mutating certain residues on this α-helix is detrimental to binding and downstream activity. Our results suggest that this B-Raf α-helix binding site on MEK could be a site to target for drug development to treat B-RafV600E-induced melanomas.


Assuntos
MAP Quinase Quinase 1/química , MAP Quinase Quinase 1/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos , Células HEK293 , Humanos , Técnicas In Vitro , Cinética , MAP Quinase Quinase 1/genética , Sistema de Sinalização das MAP Quinases , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática
16.
Mikrochim Acta ; 187(11): 599, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33034765

RESUMO

A tunable plasmon-assisted electrochemiluminescence (ECL) strategy is reported using concave Au nanocubes (Au CBs) for rapidly accelerated fibrosarcoma B-type (BRAF) detection. Concave Au CBs exhibit a strong surface plasmon coupling (SPC) effect between its sharp apexes and edges. The high spectral overlap with graphite phase carbon nitride quantum dots (g-C3N4 QDs) is achieved by tuning surface plasmon absorption peak of the concave Au CBs. It maximizes the SPC effect and enhances the ECL signal of g-C3N4 QDs 3-fold. The SPC effect of Au CBs is twice as high as with Au NPs. We also employed a toehold-mediated strand displacement (TMSD) strategy for sensitive target recycling amplification. Under optimal conditions, this sensor can determine BRAF gene from 1 pM to 1 nM with a detection limit of 3.06 × 10-5 nM (S/N = 3) and RSD 3.67%. With the aid of the TMSD strategy and tunable plasmon-assisted ECL sensing mode, this sensor also exhibits good analytical performance in human serum with satisfactory recovery of 90.2~109%. The proposed strategy provides a promising method to effectively enhance spectral overlap and detect BRAF gene.


Assuntos
Técnicas Eletroquímicas/instrumentação , Ouro/química , Medições Luminescentes/instrumentação , Nanoestruturas/química , Proteínas Proto-Oncogênicas B-raf/genética , Ressonância de Plasmônio de Superfície/métodos , Técnicas Eletroquímicas/métodos , Humanos , Medições Luminescentes/métodos , Microscopia Eletrônica de Transmissão , Proteínas Proto-Oncogênicas B-raf/sangue , Proteínas Proto-Oncogênicas B-raf/química
17.
Biochemistry ; 59(41): 3982-3992, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32970425

RESUMO

The Ras-RAF-MEK-ERK signaling axis, commonly mutated in human cancers, is highly regulated to prevent aberrant signaling in healthy cells. One of the pathway modulators, 14-3-3, a constitutive dimer, induces RAF dimerization and activation by binding to a phosphorylated motif C-terminal to the RAF kinase domain. Recent work has suggested that a C-terminal "DTS" region in BRAF is necessary for this 14-3-3-mediated activation. We show that the catalytic activity and ATP binding affinity of the BRAF:14-3-3 complex is insensitive to the presence or absence of the DTS, while the ATP sites of both BRAF molecules are identical and available for binding. We also present a crystal structure of the apo BRAF:14-3-3 complex showing that the DTS is not required to attain the catalytically active conformation of BRAF. Rather, BRAF dimerization induced by 14-3-3 is the key step in activation, allowing the active BRAF:14-3-3 tetramer to achieve catalytic activity comparable to the constitutively active oncogenic BRAF V600E mutant.


Assuntos
Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Trifosfato de Adenosina/metabolismo , Catálise , Humanos , Ligação Proteica , Multimerização Proteica , Transdução de Sinais
18.
Biochem Biophys Res Commun ; 532(2): 315-320, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32873393

RESUMO

BRAF mutants are categorized into three classes according to dependency on RAS signaling and RAF dimerization-dependency. Class I BRAF V600 mutants (RAS-independent monomer) are sensitive to vemurafenib. In contrast, both class II mutants (RAS-independent dimer) and class III mutants (RAS-dependent heterodimer) are insensitive to vemurafenib. It is not likely that BRAF inhibitors capable of inhibiting all classes of BRAF mutants are currently available. Herein, we report GNF-7 and its novel derivative, SIJ1227 as the first BRAF inhibitors capable of inhibiting all classes of BRAF mutants. Compared with vemurafenib and PLX8394, both GNF-7 and SIJ1227 possess much more strong anti-proliferative activities on melanoma (A375 and C8161) and lung cancer cells (H1755 and H1666) harboring BRAF V600E (class I mutant), BRAF G464E/G469A (class II mutant) and BRAF G466V (class III mutant), respectively. Also, both GNF-7 and SIJ1227 are capable of inhibiting more strongly colony formation than vemurafenib and PLX8394 in 3D soft agar assay using C8161 melanoma cells. In addition, GNF-7 and SIJ1227 suppress more strongly migration/invasion of these cancer cells than vemurafenib and PLX8394. Taken together, both GNF-7 and SIJ1227 are much superior to vemurafenib and PLX8394 in terms of capability to inhibit all classes of BRAF mutants.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Simulação de Acoplamento Molecular , Mutação , Proteínas Proto-Oncogênicas B-raf/química , Pirimidinonas/farmacologia , Vemurafenib/farmacologia
19.
Mol Genet Genomic Med ; 8(10): e1395, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32757330

RESUMO

BACKGROUND: ß3-αC loop is a highly conserved structural domain across oncogene families, which is a switch for kinase activity. There have been numerous researches on mutations within ß3-αC loop in EGFR, but relatively less in ERBB2, BRAF, and MAP2K1. In addition, previous studies mainly focus on ß3-αC deletion in EGFR, which is the most common type affecting kinase activity and driving lung cancer. Other mutation types are not well studied. METHODS: Here we analyzed the profile of ß3-αC loop mutations in a total of 10,000 tumor biopsy and/or ctDNA patient samples using hybridization capture-based next-generation sequencing. RESULTS: We identified 1616 mutations within ß3-αC loop in this cohort. Most mutations were located in EGFR, with less percentage in ERBB2, BRAF, and MAP2K1. EGFR ß3-αC deletions occurred at a high percentage of 96.7% and were all drug-relevant. We also detected rare EGFR ß3-αC insertions and point mutations, most of which were related to EGFR TKIs resistance. ERBB2 ß3-αC deletions were only found in breast cancers and sensitive to EGFR/ERBB2 inhibitor. Moreover, BRAF and MAP2K1 mutations within ß3-αC loop also demonstrated drugs relevance. CONCLUSION: Our study showed that oncogenic mutations within the ß3-αC loop of ERBB2, MAP2K1, and BRAF are analogous to that of EGFR, which have profound effect on drug response. Understanding the mutation profile within the ß3-αC loop is critical for targeted therapies.


Assuntos
Resistencia a Medicamentos Antineoplásicos , MAP Quinase Quinase 1/genética , Mutação , Neoplasias/genética , Proteínas Proto-Oncogênicas B-raf/genética , Receptor ErbB-2/genética , Antineoplásicos/uso terapêutico , Sequência Conservada , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/genética , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/química , Neoplasias/tratamento farmacológico , Domínios Proteicos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/química , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/química
20.
Molecules ; 25(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384767

RESUMO

Essential oils (EOs) are popular in aromatherapy, a branch of alternative medicine that claims their curative effects. Moreover, several studies reported EOs as potential anti-cancer agents by inducing apoptosis in different cancer cell models. In this study, we have considered EOs as a potential resource of new kinase inhibitors with a polypharmacological profile. On the other hand, computational methods offer the possibility to predict the theoretical activity profile of ligands, discovering dangerous off-targets and/or synergistic effects due to the potential multi-target action. With this aim, we performed a Structure-Based Virtual Screening (SBVS) against X-ray models of several protein kinases selected from the Protein Data Bank (PDB) by using a chemoinformatics database of EOs. By evaluating theoretical binding affinity, 13 molecules were detected among EOs as new potential kinase inhibitors with a multi-target profile. The two compounds with higher percentages in the EOs were studied more in depth by means Induced Fit Docking (IFD) protocol, in order to better predict their binding modes taking into account also structural changes in the receptor. Finally, given its good binding affinity towards five different kinases, cinnamyl cinnamate was biologically tested on different cell lines with the aim to verify the antiproliferative activity. Thus, this work represents a starting point for the optimization of the most promising EOs structure as kinase inhibitors with multi-target features.


Assuntos
Antineoplásicos/farmacologia , Óleos Voláteis/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cinamatos/farmacologia , Receptores ErbB/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Óleos Voláteis/análise , Polifarmacologia , Proteínas Tirosina Quinases/química , Proteínas Proto-Oncogênicas B-raf/química , Piruvato Desidrogenase Quinase de Transferência de Acetil/química , Receptores Proteína Tirosina Quinases/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...